Results of Tritone Paradox Experiment

David Meredith

Department of Computing, City University, London.

dave@titanmusic.com

www.titanmusic.com

MSc/Postgraduate Diploma in Music Information Technology Lecture Department of Music, City University, London Friday, 4 April 2003.

1. Pitch class circle orientation for each subject

1. Pitch class circle orientation for each subject

- 1. This radar graph shows for each subject the orientation of the pitch class circle that best matches his or her results and the strength of that orientation.
- 2. So people nearer the middle of the graph do not have a very strong orientation but those nearer the outside have a very strong particular orientation.
- 3. It seems that those people who got the same orientation also got that orientation with similar strength (except for me and Nikos).

2. 2-dimensional scaling of differences between responses

2. 2-dimensional scaling of differences between responses

- 1. I also counted the number of differences between each set of results and every other set of results to give a measure of the dissimilarity between any given pair of results.
- 2. Then I got a 2-dimensional scaling solution in which the distances between the points approximately represents the dissimilarity between subjects' responses.
- 3. This is the solution I got.
- 4. As you can see, there is a cluster of results here on the right.
- 5. Note the similarities and differences between this representation and the one on the radar graph.
- 6. This is actually not a particularly good multidimensional scaling solution, however.
- 7. The three dimensional solution is rather better.

3. 3-dimensional scaling of differences between responses

Derived Stimulus Configuration

Euclidean distance model

3. 3-dimensional scaling of differences between responses

- 1. This is the three-dimensional solution.
- 2. Note how the clustering in the 2-dimensional solution is now nothing like as obvious.
- 3. Unfortunately, I haven't had a chance to do a clustering analysis on this data.

correlation= .665, p < .01

- 4. Relationship between pitch-class circle orientation and nationality
- 1. This graph shows language against pitch-class circle orientation.
- 2. I encoded the languages by increasing the number by one each time I meet a new language as you move around the circle.
- 3. As you can see, correlation between this representation of the language and the orientation was .665 which is significant at the .01 probability
- 4. In other words, the results seem to be consistent with the hypothesis that chroma circle orientation is correlated with language or nationality.