
COSIATEC AND SIATECCOMPRESS:
PATTERN DISCOVERY BY GEOMETRIC COMPRESSION

David Meredith
Aalborg University

dave@titanmusic.com

ABSTRACT

Three versions of each of two greedy compression algo-
rithms, COSIATEC and SIATECCOMPRESS, were run
on the JKU Patterns Development Database. Each algo-
rithm takes a point-set representation of a piece of music
as input and computes a compressed encoding of the piece
in the form of a union of translational equivalence classes
of maximal translatable patterns. COSIATEC iteratively
uses the SIATEC algorithm to strictly partition the input
set into the covered sets of a set of MTP TECs. On each
iteration, COSIATEC finds the “best” TEC and then re-
moves its covered set from the input dataset. SIATEC-
COMPRESS runs SIATEC just once to get a list of MTP
TECs and then selects a subset of the “best” TECs that is
sufficient to cover the input dataset. Both algorithms se-
lect TECs primarily on the basis of compression ratio and
compactness.

1. INTRODUCTION

In this paper, I present two greedy compression algorithms,
COSIATEC and SIATECCOMPRESS, designed specifi-
cally to compute structural descriptions (i.e., analyses) of
pieces of music. Both algorithms are based on the SIA
and SIATEC algorithm described by Meredith, Lemström
and Wiggins [6]. Each algorithm takes a point-set repre-
sentation of a musical piece as input and computes a com-
pact encoding of the piece in the form of a set of trans-
lational equivalence classes of maximal translatable pat-
terns. COSIATEC generates a strict partitioning of the
input dataset, whereas the sets of pattern occurrences com-
puted by SIATECCOMPRESS may share points (i.e., notes).

Both algorithms are founded on the hypothesis that the
best ways of understanding a piece of music are those that
are represented by the shortest descriptions of the piece. In
other words, they are designed to explore the notion that
music analysis is effectively just music compression.

2. USING POINT SETS TO REPRESENT MUSIC

In the algorithms described below, it is assumed that the
piece of music to be analysed is represented in the form

This document is licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-nc-sa/3.0/
c© 2013 David Meredith.

of a multi-dimensional point set called a dataset, as de-
scribed by Meredith et al. [6]. Although these algorithms
work with datasets of any dimensionality, it will be as-
sumed here that each dataset is a set of two-dimensional
points, 〈t, p〉, where each point represents a single note or
sequence of tied notes whose onset time is t in tatums and
whose morphetic pitch [4–6] is p. If morphetic pitch infor-
mation is not available (e.g., because the data is in MIDI
format), then (at least for Western tonal music) it can be
very reliably computed from chromatic pitch (i.e., MIDI
note number) using an algorithm such as PS13s1 [4, 5].

3. MAXIMAL TRANSLATABLE PATTERNS

I shall use the term pattern to refer to any subset of a
dataset. Suppose D is a dataset and P1, P2 ⊆ D. The
two patterns, P1, P2, are said to be translationally equiv-
alent, denoted by P1 ≡T P2, if and only if there exists a
vector v, such that P1 translated by v is equal to P2. That
is,

P1 ≡T P2 ⇐⇒ (∃v | P2 = P1 + v) . (1)

Given a vector, v, then the maximal translatable pattern
(MTP) for v in the dataset, D, is defined and denoted as
follows:

MTP(v,D) = {p | p ∈ D ∧ p+ v ∈ D} (2)

where p + v is the point that results when one translates p
by the vector v. In other words, the MTP for a vector v in
a dataset D is the set of points in D that can be translated
by v to give other points that are also in D.

The notion that COSIATEC and SIATECCOMPRESS

can be used to discover the patterns in a piece of music that
an analyst or a listener finds important, is founded upon the
hypothesis that these patterns correspond in some way to
MTPs in the pitch-time dataset representation of the piece.
Meredith et al. [6] describe an algorithm called SIA for
discovering all the MTPs in a dataset.

4. TRANSLATIONAL EQUIVALENCE CLASSES

When analysing a piece of music, we typically want to find
all the occurrences of an interesting pattern, not just one
occurrence. Given a pattern, P , in a dataset, D, the trans-
lational equivalence class (TEC) of P in D is defined and
denoted as follows:

TEC(P,D) = {Q | Q≡T P ∧Q ⊆ D} . (3)

We can also define the covered set of a TEC, T , denoted by
COV(T), to be the union of the occurrences in the TEC.
That is,

COV(T) =
⋃

P∈T
P . (4)

Here we will be particularly concerned with MTP TECs—
that is, the translational equivalence classes of the maxi-
mal translatable patterns in a dataset. Meredith et al. [6]
describe an algorithm called SIATEC that uses SIA to find
all the MTPs and then goes on to find the TEC of each of
these MTPs (i.e., it finds all the (exact) occurrences of all
the MTPs).

A TEC is a set of patterns that are all translationally
equivalent to each other. Suppose a TEC, T , contains n
occurrences of a pattern containing m points. There are at
least two ways in which one can specify T . First, one can
explicitly list each of the n occurrences in T explicitly by
listing all of the m points in each occurrence. This requires
one to write down mn 2-dimensional points or 2mn inte-
gers. Alternatively, one can explicitly list the m points in
just one of the n occurrences, P , and then give the n − 1
vectors required to map P onto the other occurrences. This
requires one to write down m 2-dimensional points and
n−1, 2-dimensional vectors—that is, 2(m+n−1) integers.
If n and m are both greater than one, then 2(m+ n− 1) is
less than 2mn, implying that the second method of spec-
ifying a TEC gives us a compressed encoding of the TEC
(and therefore also of its covered set). Thus, in principle, if
a dataset contains repeated (i.e., translationally equivalent)
patterns, it may be possible to encode the dataset in a com-
pact manner by representing it as the union of the covered
sets of a set of TECs, where each TEC, T , is encoded as
an ordered pair, 〈P, V 〉, where P is one occurrence in T
and V is the set of vectors that map P onto the other oc-
currences in T . When a TEC, T = 〈P, V 〉, is represented
in this way, we call P the pattern and V the translator set
of the TEC.

5. THE COSIATEC ALGORITHM

COSIATEC [3, 7] (see Figure 1) is a greedy compression
algorithm, based on SIATEC, that takes a dataset, D, as
input and computes a compressed encoding of D in the
form of an ordered set of MTP TECs, T, such that

D =
⋃

T∈T

COV(T) (5)

and, for all T1,T2 ∈ T,T1 6= T2,

COV(T1) ∩ COV(T2) = ∅ . (6)

In other words, COSIATEC partitions a dataset D into the
covered sets of a set of MTP TECs. If each of these MTP
TECs is represented as a 〈pattern, translator set〉 pair, then
this description of the dataset as a set of TECs is typically
shorter than an in extenso description in which the points
in the dataset are simply listed explicitly.

COSIATEC begins by making a copy of the input
dataset which it stores in the variable P (line 1). Then, on

COSIATEC(D)
1 P ← COPY(D)
2 T∗ ← nil
3 T← 〈〉
4 while P 6= ∅
5 T∗ ← GETBESTTEC(P,D)
6 T← T⊕ 〈T∗〉
7 P ← P \ COV(T∗)
8 return T

Figure 1. The COSIATEC algorithm.

GETBESTTEC(P,D)
1 V← COMPUTEVECTORTABLE(P)
2 MCPs← COMPUTEMTPCISPAIRS(V)
3 mcp ← nil
4 T∗ ← nil
5 for i← 0 to |MCPs| − 1
6 mcp ←MCPs[i]
7 T ← GETTECFORMTP(mcp,V, P)
8 conj ← GETCONJ(T)
9 T ← REMREDTRAN(T)
10 conj ← REMREDTRAN(conj)
11 if T∗ = nil ∨ ISBETTERTEC(T ,T∗)
12 T∗ ← T
13 if ISBETTERTEC(conj ,T∗)
14 T∗ ← conj
15 return T∗

Figure 2. The GETBESTTEC algorithm.

each iteration of the while loop (lines 4–7), the algorithm
finds the “best” MTP TEC in P , T ∗, appends this TEC to
T and then removes the set of points covered by T ∗ from
P . When P is empty, the algorithm terminates, returning
the list of MTP TECs, T. The sum of the number of trans-
lators and the number of points in this output encoding is
never more than the number of points in the input dataset
and can be much less than this if there are many repeated
patterns in the input dataset.

Given an input dataset, D, and what remains of a copy,
P , of this dataset after the removal of zero or more MTP
TEC covered sets, the COSIATEC algorithm finds the
“best” MTP TEC in P (line 5), using the GETBESTTEC
algorithm shown in Figure 2. In lines 1–2 of GETBEST-
TEC, the SIA algorithm is used to find all the MTPs in the
dataset. The first step in this process is to compute a so-
called vector table, V, which is a two-dimensional array
of ordered triples,

V[i][j] = 〈pi − pj , pj , j〉 ,

where pi − pj is the vector from point pj to pi and pk =
P[k], where P is an ordered set that only contains every
element in P , sorted into lexicographical order.

Having computed the vector table, V, the MTPs are
found by sorting the triples in V, lexicographically by their
vectors (i.e., their first elements), and then scanning this
sorted list once: each MTP is then equal to the points as-
sociated with a run of consecutive triples with the same
vector in this sorted list. This is accomplished in line 2 of
GETBESTTEC using the COMPUTEMTPCISPAIRS algo-
rithm, which is shown in Figure 3.

COMPUTEMTPCISPAIRS(V)
1 W← SORTBYVECTOR(V)
2 MTPs← 〈〉
3 CISs← 〈〉
4 v ←W[0][0]
5 mtp← 〈W[0][1]〉
6 cis← 〈W[0][2]〉
7 for i← 1 to |W| − 1
8 vpi←W[i]
9 if vpi[0] = v
10 mtp←mtp⊕ 〈vpi[1]〉
11 cis← cis⊕ 〈vpi[2]〉
12 else
13 MTPs←MTPs⊕ 〈mtp〉
14 CISs← CISs⊕ 〈cis〉
15 mtp← 〈vpi[1]〉
16 cis← 〈vpi[2]〉
17 v ← vpi[0]
18 MTPs←MTPs⊕ 〈mtp〉
19 CISs← CISs⊕ 〈cis〉
20 MCPs← 〈〉
21 for i← 0 to |MTPs| − 1
22 MCPs←MCPs⊕ 〈〈MTPs[i],CISs[i]〉〉
23 return MCPs

Figure 3. The COMPUTEMTPCISPAIRS algorithm.

The COMPUTEMTPCISPAIRS algorithm (Figure 3) first
sorts the triples in the vector table, V, into increasing
lexicographical order by their vectors. The resulting or-
dered set of triples is stored in the variable W (see line 1).
In lines 2–19 of this algorithm, two lists are constructed,
MTPs and CISs. MTPs contains all the MTPs in the
dataset, each MTP being represented as an ordered set of
points in lexicographical order. CISs contains, for each
MTP, a list of the indices of the columns in the vector ta-
ble corresponding to the points in the MTP. In lines 20–
22 of COMPUTEMTPCISPAIRS, a list of 〈mtp, cis〉 pairs
is constructed by combining corresponding elements in
MTPs and CISs.

In lines 5–14 of GETBESTTEC, the for loop iterates
over this ordered set of 〈mtp, cis〉 pairs computed by
COMPUTEMTPCISPAIRS. For each pair, the TEC of the
MTP is computed in line 7 using the technique employed
in the SIATEC algorithm [6]. Then, in line 8, the conjugate
TEC [1] is computed for each MTP TEC found in line 7.
The concept of a conjugate TEC is illustrated in Figure 4.
Given a TEC, T = 〈P, V 〉, the conjugate of T is denoted
and defined as follows:

GETCONJ(T) = 〈P ′, V ′〉 (7)

where, if p0 is the lexicographically first point in P ,

P ′ = {p0} ∪ {p0 + v | v ∈ V } , (8)

and
V ′ = {p− p0 | p ∈ P} \ {〈0, 0〉} . (9)

Given a pair of conjugate TECs, one may be “better” than
the other. For example, the TEC in the upper graph in Fig-
ure 4 would be judged by the algorithms presented here to
be “better than” its conjugate in the lower graph because
its patterns are more compact.

In lines 9 and 10 of GETBESTTEC, redundant trans-
lators are removed from both the TEC, T , and its con-
jugate using the REMREDTRAN algorithm. A translator
is defined to be redundant if it can be removed from the
translator set of a TEC without changing the covered set
of the TEC. Ideally, in order to get the most compact de-
scription of the covered set of a TEC, one would want to
remove as many redundant translators as possible. How-
ever, in general, finding the smallest subset of the translator
set of a TEC that is sufficient to generate the TEC’s cov-
ered set is an NP-hard problem. In the implementation of
COSIATEC submitted to the MIREX 2013 competition, a
greedy approximation algorithm is used to remove as many
redundant translators as possible from a TEC within a rea-
sonable running time.

Finally, in lines 11–14 of GETBESTTEC, each MTP
TEC and its conjugate are compared with the “best” TEC
so far and replace it if they are deemed superior to it by the
ISBETTERTEC function, defined in Figure 5. This func-
tion takes two TECs as its arguments and returns true if
the first is “better than” the second. In lines 1–2 of IS-
BETTERTEC, the compression ratio of the two TECs are
compared. If P(T) and V(T) are defined to return the pat-
tern and translator set of a TEC, T , respectively, then the
compression ratio of a TEC is defined as follows:

COMPRATIO(T) =
|P(T)|+ |V(T)| − 1

|COV(T)|
. (10)

If the two TECs to be compared have the same compres-
sion ratio, then they are compared for bounding-box com-
pactness (lines 3–4 of ISBETTERTEC) [6]. The bounding-
box compactness of a TEC is the number of points in the
TEC’s pattern divided by the number of dataset points in
the bounding box of this pattern. If the two TECs have the
same compression ratio and compactness, the TEC with
largest covered set is considered superior (lines 5–6). If
the two covered sets are also the same size, then the TEC
with the larger pattern is considered superior (lines 7–8). If
the patterns are also the same size, then the TEC with the
pattern that has the shorter temporal duration is considered
superior (lines 9–10). Finally, if the two TECs also have
the same temporal duration then, then the TEC with the
pattern whose bounding box has the smaller area is con-
sidered superior (lines 11–12).

6. THE SIATECCOMPRESS ALGORITHM

COSIATEC runs SIATEC on each iteration of its while
loop. Since SIATEC has worst case running time O(n3)
where n is the number of points in the input dataset, run-
ning COSIATEC on large datasets can be time-consuming
(see Table 1 for some example running times). On the other
hand, because COSIATEC strictly partitions the dataset
into non-overlapping MTP TEC covered sets, it tends to
achieve high compression ratios for many point-set repre-
sentations of musical pieces (typically between 2 and 4 for
a piece of classical or baroque music).

Like COSIATEC, the SIATECCOMPRESS algorithm
shown in Figure 6 is a greedy compression algorithm based

Figure 4. The upper graph shows an MTP TEC in the Fugue in C major (BWV 846) from J. S. Bach’s Das Wohltemperierte
Klavier. The lower graph shows the conjugate of the TEC in the upper graph.

ISBETTERTEC(T1,T2)
1 if COMPRATIO(T1) > COMPRATIO(T2)
2 return true
3 if COMPACTNESS(T1) > COMPACTNESS(T2)
4 return true
5 if |COV(T1)| > |COV(T2)|
6 return true
7 if PATTERNSIZE(T1) > PATTERNSIZE(T2)
8 return true
9 if PATTERNWIDTH(T1) < PATTERNWIDTH(T2)
10 return true
11 if PATTERNAREA(T1) < PATTERNAREA(T2)
12 return true
13 return false

Figure 5. The ISBETTERTEC function.

SIATECCOMPRESS(D)
1 V← COMPUTEVECTORTABLE(D)
2 MCPs← COMPUTEMTPCISPAIRS(V)
3 MCPs← REMOVETRANEQUIVMTPS(MCPs)
4 T← COMPUTETECS(D,V,MCPs)
5 T← ADDCONJUGATETECS(T)
6 T← REMREDTRAN(T)
7 T← SORTTECSBYQUALITY(T)
8 return COMPUTEENCODING(D,T)

Figure 6. The SIATECCOMPRESS algorithm.

on SIATEC that computes an encoding of a dataset in the
form of a union of TECs. However, unlike COSIATEC,
SIATECCOMPRESS runs SIATEC only once to get a list
of TECs in decreasing order of quality (as defined by the
ISBETTERTEC function in Figure 5). It then works its
way down this list, selecting TECs to include in the en-
coding, until the input dataset is covered. SIATECCOM-
PRESS does not generally produce as compact an encoding
as COSIATEC, since the TECs in its output may share
points. However, it is faster than COSIATEC and can
therefore be used practically on much larger datasets.

COMPUTEENCODING(D,T)
1 P ← ∅
2 E← 〈〉
3 for i← 0 to |T| − 1
4 T ← T[i]
5 S ← COV(T)
6 if |S \ P | > |P(T)|+ |V(T)| − 1
7 E← E⊕ 〈T 〉
8 P ← P ∪ S
9 if |P | = |D|
10 break
11 R← D \ P
12 if |R| > 0
13 E← E⊕ 〈ASTEC(R)〉
14 return E

Figure 7. The COMPUTEENCODING algorithm.

The first steps in SIATECCOMPRESS are to com-
pute a vector table and compute MTPs using the SIA al-
gorithm, implemented in COMPUTEVECTORTABLE and
COMPUTEMTPCISPAIRS, as in the first two lines of
GETBESTTEC (see Figure 2). The next step (line 3 in
Figure 6) is to remove MTPs from the list, MCPs, that
are translationally equivalent to MTPs that occur earlier in
this list. This eliminates the possibility of the same TEC
being computed more than once in line 4. In line 5, the
conjugate of each TEC found in line 4 is also added to the
list of candidate TECs, T. In line 6, redundant translators
are removed from the translator set of each TEC in T and,
in line 7, the resulting list of candidate TECs is sorted into
decreasing order of quality using the ISBETTERTEC com-
parator function. This ordered set of TECs is then given to
the COMPUTEENCODING function (Figure 7), which com-
putes a compact encoding of the input dataset.

7. RESULTS

Three versions of each of the two algorithms described
above were run on the JKU Patterns Development

Database 1 (JKU PDD) [2]. The results are shown in Ta-
ble 1. The values in the table were computed using Tom
Collins’ MATLAB implementation of the metrics defined
in [2], bundled with the JKU PDD.

Each row in Table 1 gives the results of running one
version of an algorithm on one of the five pieces in the
JKU PDD. The first column gives the name of the algo-
rithm. Each name either has no suffix (e.g., “COSIATEC”,
“SIATECCompress”) or one of the two suffixes, “BB” or
“Segment”. A name with no suffix indicates that the row
shows the results of running the plain algorithm as de-
scribed above, with the discovered patterns equal to the
MTP TECs in the output encoding. A name with the suffix
“BB” indicates that each occurrence within a TEC in the
output of the algorithm is replaced with the set of dataset
points in the bounding-box of the occurrence. A name with
the suffix “Segment” indicates that each occurrence within
a TEC in the output of the algorithm is replaced with the
set of dataset points in the time segment spanned by the
occurrence.

The following preliminary observations can be made
from studying these results:

1. The algorithms generally score better on establish-
ment recall than establishment precision; whereas
each algorithm’s occurrence recall and occurrence
precision scores tend to be more similar to each
other.

2. The algorithms score higher on occurrence measures
than establishment measures.

3. On “three-layer” measures (P 3, R 3 and TLF 1),
the algorithms generally score better on recall than
precision.

4. SIATECCOMPRESS is 5–10 times faster than
COSIATEC and clearly has a lower order of growth
with respect to input size. A more detailed analysis
of runtime will be given in a later paper.

5. The highest establishment F1 score of 0.78 was
obtained using SIATECCompressSegment on the
Beethoven Sonata movement.

6. The highest occurrence F1 score with c = 0.75 of
0.94 was obtained using COSIATEC on the mono-
phonic Mozart Sonata movement. On this move-
ment, the algorithm also achieved occurrence pre-
cision and occurrence recall of 0.94.

7. The highest values of the “three-layer” F1 score
(0.62–0.65) were obtained using SIATECCom-
pressSegment on the Beethoven Sonata movement
(similar values were obtained for both the mono-
phonic and polyphonic versions).

8. The highest values of the occurrence F1 score with
c = 0.5 were 0.85–0.87 obtained using COSIATEC
and COSIATECBB on the monophonic version of
the Mozart Sonata movement.

1 https://dl.dropbox.com/u/11997856/JKU/
JKUPDD-noAudio-Aug2013.zip

8. CONCLUSIONS

The results indicate that the output of COSIATEC and
SIATECCOMPRESS is clearly related to the human-
identified patterns annotated in the JKU PDD ground truth.
However, evaluating a musical analysis algorithm by how
well its output predicts whether or not a pattern is consid-
ered “important” or “interesting” by some particular ana-
lyst seems somewhat arbitrary. The goal of music analysis
is to find the best ways of understanding musical works—
that is, those ways that allow us to more effectively carry
out expert musical tasks. Such tasks could include, for ex-
ample, identifying errors in scores or performances, cor-
rectly identifying authorship or completing partial compo-
sitions. Simply claiming that a pattern is a “pattern of in-
terest” or “perceptually salient” or “structurally important”
doesn’t really mean very much, unless one can show how
knowing about the pattern helps with carrying out some ex-
pert musical task more effectively. Nevertheless, the first
MIREX competition on Pattern Discovery is an important
step towards the development of rigorous methodologies
for evaluating algorithms for musical pattern discovery.

9. REFERENCES

[1] Tom Collins. Improved methods for pattern discovery
in music, with applications in automated stylistic com-
position. PhD thesis, Faculty of Mathematics, Com-
puting and Technology, The Open University, Milton
Keynes, 2011.

[2] Tom Collins. Mirex 2013 competition: Discovery of
repeated themes and sections, 2013.

[3] David Meredith. Point-set algorithms for pattern dis-
covery and pattern matching in music. In Pro-
ceedings of the Dagstuhl Seminar on Content-
based Retrieval (No. 06171, 23–28 April, 2006),
Schloss Dagstuhl, Germany, 2006. Available online at
<http://drops.dagstuhl.de/opus/volltexte/2006/652>.

[4] David Meredith. The ps13 pitch spelling algorithm.
Journal of New Music Research, 35(2):121–159, 2006.

[5] David Meredith. Computing Pitch Names in Tonal Mu-
sic: A Comparative Analysis of Pitch Spelling Algo-
rithms. PhD thesis, Faculty of Music, University of Ox-
ford, 2007.

[6] David Meredith, Kjell Lemström, and Geraint A. Wig-
gins. Algorithms for discovering repeated patterns in
multidimensional representations of polyphonic music.
Journal of New Music Research, 31(4):321–345, 2002.

[7] David Meredith, Kjell Lemström, and Geraint A. Wig-
gins. Algorithms for discovering repeated patterns in
multidimensional representations of polyphonic music.
In Cambridge Music Processing Colloquium, 2003.

Table 1. Results of running COSIATEC and SIATECCOMPRESS on the JKU Patterns Development Database.

