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ABSTRACT

Thirteen different compression algorithms were used to calculate
the normalized compression distances (NCDs) between pairs of
tunes in the Annotated Corpus of 360 Dutch folk songs from the
collection Onder de groene linde. These NCDs were then used
in conjunction with the 1-nearest-neighbour algorithm and leave-
one-out cross-validation to classify the 360 melodies into tune
families. The classifications produced by the algorithms were
compared with a ground-truth classification prepared by expert
musicologists. Twelve of the thirteen compressors used in the ex-
periment were based on the discovery of translational equivalence
classes (TECs) of maximal translatable patterns (MTPs) in point-
set representations of the melodies. The twelve algorithms con-
sisted of four variants of each of three basic algorithms, COSI-
ATEC, SIATECCOMPRESS and Forth’s algorithm. The main
difference between these algorithms is that COSIATEC strictly
partitions the input point set into TEC covered sets, whereas the
TEC covered sets in the output of SIATECCOMPRESS and Forth’s
algorithm may share points. The general-purpose compressor,
bzip2, was used as a baseline against which the point-set com-
pression algorithms were compared. The highest classification
success rate of 77–84% was achieved by COSIATEC, followed
by 60–64% for Forth’s algorithm and then 52–58% for SIATE-
CCOMPRESS. When the NCDs were calculated using bzip2,
the success rate was only 12.5%. The results demonstrate that
the effectiveness of NCD for measuring similarity between folk-
songs for classification purposes is highly dependent upon the
actual compressor chosen. Furthermore, it seems that compres-
sors based on finding maximal repeated patterns in point-set rep-
resentations of music show more promise for NCD-based mu-
sic classification than general-purpose compressors designed for
compressing text strings.

1. INTRODUCTION

For over a century, musicologists have been interested
in measuring similarity between folk song melodies
(Scheurleer, 1900; van Kranenburg et al., 2013), primarily
with the purpose of classifying such melodies into fami-
lies (Bayard, 1950) of tunes that have a common ancestor
in the tree of oral transmission. Researchers have used
a plethora of different features and methods in their at-
tempts to automate (or at least formalize) this process of
folk-song classification (see van Kranenburg et al., 2013,
for an overview). In some cases, such methods have led
to almost perfect models of the classifications produced by
expert musicologists. For example, van Kranenburg et al.
(2013) report a 99% success rate for classifying a set of 360
Dutch folk songs with a method based on local-features
and string alignment. In contrast, in the study reported
here, a universal, generally-applicable similarity metric,
normalized compression distance (NCD, Li et al., 2004),
is used to classify folk-song melodies based on compress-

ing the melodies by discovering maximal repeated patterns
within them.

Normalized compression distance has been used in sev-
eral music classification studies in the past (Cilibrasi et al.,
2004; Li & Sleep, 2004, 2005; Hillewaere et al., 2012).
However, in these studies, only general-purpose compres-
sors such as those based on the Lempel-Ziv algorithm (Ziv
& Lempel, 1977, 1978) and bzip2 (Seward, 2010) have
been used. In the study reported here, NCD was used to
classify folk songs using a number of different compres-
sion algorithms specifically designed for producing com-
pact structural analyses of pieces of music from symbolic
encodings in the form of point sets (Meredith et al., 2003;
Meredith, 2006a; Forth & Wiggins, 2009; Forth, 2012;
Meredith, 2013). The results suggest that the choice of
compressor has a very marked effect on the classification
success rate.

2. NORMALIZED COMPRESSION DISTANCE

Li et al. (2004) introduced the normalized information
distance (NID), a universal similarity metric based on
Kolmogorov complexity (Li & Vitányi, 2008). The Kol-
mogorov complexity of any object is the length in bits of
the shortest program that generates the object as its only
output. The NID defines the distance between any two ob-
jects, x and y, as

d(x, y) =
max{K(x | y∗),K(y | x∗)}

max{K(x),K(y)}

where K(x) is the Kolmogorov complexity of x and K(x |
y∗) is the conditional complexity of x given a description
of y whose length is equal to the Kolmogorov complex-
ity of y. The Kolmogorov complexity of an object, how-
ever, is not computable. Therefore, K(x) has to be substi-
tuted in practice by the length of a compressed encoding
of x generated using a real-world compressor. Li et al.
(2004) therefore propose the normalized compression dis-
tance (NCD) as a practical alternative to the NID and de-
fine it as follows:

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}

where C(x) is the length of a compressed encoding of x
and C(xy) is the length of a compressed encoding of a
concatenation of x and y.



Figure 1: An example of a dataset. A two-dimensional
point-set representing the fugue from J. S. Bach’s Prelude
and Fugue in C minor, BWV 846. The horizontal axis
represents onset time in tatums; the vertical axis repre-
sents morphetic pitch. Each point represents a note or a
sequence of tied notes.

3. REPRESENTING MUSIC WITH POINT SETS

In the algorithms considered in this paper, it is assumed
that the music to be analysed is represented in the form of
a multi-dimensional point set called a dataset, as described
by Meredith et al. (2002). All the algorithms described be-
low work with datasets of any dimensionality. However,
it will be assumed here that each dataset is a set of two-
dimensional points, 〈t, p〉, on an integer lattice, where t and
p are, respectively, the onset time in tatums and the chro-
matic or morphetic pitch (Meredith, 2006b, 2007; Mered-
ith et al., 2002) of a note or sequence of tied notes in a
score. Figure 1 shows an example of such a dataset. When
the music to be analysed is modal or uses the major-minor
tonal system, the output of the algorithms described be-
low is typically better when morphetic pitch is used. If
morphetic pitch information is not available (e.g., because
the data is only available in MIDI format), then, for modal
or tonal music, it can be reliably computed from a rep-
resentation that provides the chromatic pitch (i.e., MIDI
note number) of each note, by using an algorithm such
as PS13s1 (Meredith, 2006b, 2007). For pieces of mu-
sic not based on the modal or major-minor tonal system,
using chromatic pitch may give better results than using
morphetic pitch.

4. MAXIMAL TRANSLATABLE PATTERNS

If D is a dataset, then any subset of D may be called a
pattern. If P1, P2 ⊆ D, then P1, P2, are said to be trans-
lationally equivalent, denoted by P1 ≡T P2, if and only if
there exists a vector v, such that P1 translated by v is equal
to P2. That is,

P1 ≡T P2 ⇐⇒ (∃v | P2 = P1 + v) , (1)

where P1 + v denotes the pattern that results when P1 is
translated by the vector v. For example, in each of the
graphs in Figure 2, the pattern of circles is translationally
equivalent to the pattern of crosses. A pattern, P ⊆ D, is
said to be translatable within a dataset, D, if and only if
there exists a vector, v, such that P + v ⊆ D. Given a
vector, v, then the maximal translatable pattern (MTP) for
v in the dataset, D, is defined and denoted as follows:

MTP(v,D) = {p | p ∈ D ∧ p + v ∈ D} (2)

Figure 2: Examples of maximal translatable patterns
(MTPs). In each graph, the pattern of circles is the maxi-
mal translatable pattern (MTP) for the vector indicated by
the arrow. The pattern of crosses in each graph is the pat-
tern onto which the pattern of circles is mapped by the vec-
tor indicated by the arrow.

Figure 3: Examples of translational equivalence classes
(TECs). In each graph, the pattern of circles is translatable
by the vectors indicated by the arrows. The TEC of each
pattern of circles is the set of patterns containing the cir-
cle pattern itself along with the other patterns generated by
translating the circle pattern by the vectors indicated. The
covered set of each TEC is the set of points denoted by
icons other than filled black dots.

where p+v is the point that results when p is translated by
the vector v. Figure 2 shows some examples of maximal
translatable patterns.

5. TRANSLATIONAL EQUIVALENCE CLASSES

When analysing a piece of music, we typically want to find
all the occurrences of an interesting pattern, not just one
occurrence. Thus, if we believe that MTPs are related in
some way to the patterns that listeners and analysts find
interesting, then we want to be able to find all the occur-
rences of each MTP. Given a pattern, P , in a dataset, D, the
translational equivalence class (TEC) of P in D is defined
and denoted as follows:

TEC(P,D) = {Q | Q≡T P ∧Q ⊆ D} . (3)

That is, the TEC of a pattern, P , in a dataset contains all
and only those patterns in the dataset that are translation-
ally equivalent to P . Figure 3 shows some examples of
TECs.

We define the covered set of a TEC, T , denoted by
COV(T ), to be the union of the patterns in the TEC, T .
That is,

COV(T ) =
⋃
P∈T

P . (4)

Here, we will be particularly concerned with MTP TECs—
that is, the translational equivalence classes of the maximal



translatable patterns in a dataset.
A TEC, T = TEC(P,D), contains all the patterns in

the dataset, D, that are translationally equivalent to the
pattern, P . Suppose T contains n translationally equiv-
alent occurrences of the pattern, P , and that P contains
m points. There are at least two ways in which one can
specify T . First, one can explicitly specify each of the n
patterns in T by listing all of the m points in each pat-
tern. This requires one to write down mn, k-dimensional
points or kmn numbers. Alternatively, one can explicitly
list the m points in just one of the patterns in T (e.g., P )
and then give the n−1 vectors required to translate this pat-
tern onto its other occurrences in the dataset. This requires
one to write down m, k-dimensional points and n − 1, k-
dimensional vectors—that is, k(m + n − 1) integers. If n
and m are both greater than one, then k(m+n− 1) is less
than kmn, implying that the second method of specifying
a TEC gives us a compressed encoding of the TEC. Thus,
if a dataset contains at least two occurrences of a pattern
containing at least two points, it will be possible to encode
the dataset in a compact manner by representing it as the
union of the covered sets of a set of TECs, where each
TEC, T , is encoded as an ordered pair, 〈P, V 〉, where P
is a pattern in the dataset, and V is the set of vectors that
translate P onto its other occurrences in the dataset. When
a TEC, T = 〈P, V 〉, is represented in this way, we call V
the set of translators for the TEC and P the TEC’s pattern.
We also denote and define the compression ratio of a TEC,
T = 〈P, V 〉 as follows:

CR(T ) =
|COV(T )|
|P |+ |V |

. (5)

In this paper, the pattern, P , of a TEC used to encode it
as a 〈P, V 〉 pair will be assumed to be the lexicographically
earliest occurring member of the TEC (i.e., the one that
contains the lexicographically least point).

6. THE ALGORITHMS

6.1 SIA

All of the compression algorithms considered in this pa-
per are based on Meredith, Lemström and Wiggins’ SIA
algorithm (Meredith et al., 2001, 2002, 2003; Meredith,
2006a). 1 SIA finds all the maximal translatable patterns
in a set of n, k-dimensional points in Θ(kn2 lg n) time and
Θ(kn2) space. Figure 4 describes how the algorithm works
with a simple example and Figure 5 gives pseudocode for
a straight-forward implementation of SIA. In the pseu-
docode used in this paper, unordered sets are denoted by
italic upper-case letters (e.g., D in Figure 5). Ordered sets
are denoted by boldface upper-case letters (e.g., V, D and
M in Figure 5). When written out in full, ordered sets are
denoted by angle brackets, “〈·〉”. Concatenation is denoted
by “⊕” and the assignment operator is “←”. A[i] denotes
the (i+1)th element of the ordered set (or one-dimensional
array), A, (i.e., zero-based indexing is used). If B is an or-
dered set of ordered sets (or a two-dimensional array), then

1 SIA stands for “Structure Induction Algorithm”.

(a) (b)

(c)

Figure 4: The SIA algorithm. (a) A small dataset that
could be provided as input to SIA. (b) The vector table
computed by SIA for the dataset in (a). Each entry in the
table gives the vector from a point to a lexicographically
later point. Each entry has a pointer back to the origin point
used to compute the vector. (c) The list of 〈vector, point〉
pairs that results when the entries in the vector table in
(b) are sorted into lexicographical order. If this list is seg-
mented at points at which the vector changes, then the set
of points in the entries within a segment form the MTP for
the vector for that segment.

SIA(D)
1 D← SORTLex(D)
2 V ← 〈〉
3 for i← 0 to |D| − 2
4 for j ← i + 1 to |D| − 1
5 V ← V ⊕ 〈〈D[j]−D[i], i〉〉
6 V′ ← SORTLex(V)
7 M← 〈〉
8 v ← V′[0][0]
9 P← 〈D[V′[0][1]]〉
10 for i← 1 to |V′| − 1
11 if V′[i][0] = v
12 P← P⊕ 〈D[V′[i][1]]〉
13 else
14 M←M⊕ 〈〈P, v〉〉
15 v ← V′[i][0]
16 P← 〈D[V′[i][1]]〉
17 M←M⊕ 〈〈P, v〉〉
18 return M

Figure 5: Pseudocode for a straight-forward implementa-
tion of SIA.

B[i][j] denotes the (j + 1)th element in the (i + 1)th el-
ement of B. Elements in arrays of higher dimension are
indexed analogously. Block structure is indicated by in-
dentation alone.

The algorithm can easily be modified so that it only
generates MTPs whose sizes lie within a particular user-
specified range. It is also possible for the same pattern
to be the MTP for more than one vector. If this is the
case, there will be two or more 〈pattern, vector〉 pairs in
the output of SIA that have the same pattern. This can
be avoided and the output can be made more compact by
generating instead a list of 〈pattern, vector set〉 pairs, such
that the vector set in each pair contains all the vectors for
which the pattern is an MTP. In order to accomplish this,
we merge the vectors for which a given pattern is the MTP
into a single vector set which is then paired with the pattern
in the output.



Figure 6: The vector table computed by SIATEC for the
dataset shown in Figure 4 (a).

COSIATEC(D)
1 D′ ← COPY(D)
2 T← 〈〉
3 while D′ 6= ∅
4 T ← GETBESTTEC(D′, D)
5 T← T⊕ 〈T 〉
6 D′ ← D′ \ COV(T )
7 return T

Figure 7: The COSIATEC algorithm.

6.2 SIATEC

SIATEC (Meredith et al., 2001, 2002, 2003; Meredith,
2006a) computes all the MTP TECs in a k-dimensional
dataset of size n in O(kn3) time and O(kn2) space. In
order to find the MTPs, the SIA algorithm only needs to
compute the vectors from each point in a dataset to each
lexicographically later point. However, to compute all oc-
currences of the MTPs, it turns out to be beneficial in
the SIATEC algorithm to compute the vectors between
all pairs of points, resulting in a vector table like the one
shown in Figure 6. The SIATEC algorithm first finds all
the MTPs using SIA. It then uses the vector table to find
all the vectors by which each MTP is translatable within
the dataset. The set of vectors by which a given pattern
is translatable is equal to the intersection of the columns
in the vector table headed by the points in the pattern
(see Figure 6). In a vector table computed by SIATEC,
each row descends lexicographically from left to right and
each column increases lexicographically from top to bot-
tom. SIATEC exploits these properties of the vector table
to more efficiently find all the occurrences of each MTP
(Meredith et al., 2002, pp. 335–338).

6.3 COSIATEC

COSIATEC (Meredith et al., 2003; Meredith, 2006a,
2013) is a greedy point-set compression algorithm, based
on SIATEC. COSIATEC takes a dataset, D, as input
and computes a compressed encoding of D in the form
of an ordered set of MTP TECs, T, such that D =⋃

T∈T COV(T ) and COV(T1) ∩ COV(T2) = ∅ for all
T1, T2 ∈ T where T1 6= T2. In other words, COSIATEC
strictly partitions a dataset, D, into the covered sets of a set
of MTP TECs. If each of these MTP TECs is represented
as a 〈pattern, translator set〉 pair, then this description of
the dataset as a set of TECs is typically shorter than an in
extenso description in which the points in the dataset are
listed explicitly.

Figure 7 shows pseudocode for COSIATEC. The first

step in the algorithm is to make a copy of the input dataset
which is stored in the variable D′ (line 1). Then, on each
iteration of the while loop (lines 3–6), the algorithm finds
the “best” MTP TEC in D′, stores this in T and adds T
to T. It then removes the set of points covered by T from
D′ (line 6). When D′ is empty, the algorithm terminates,
returning the list of MTP TECs, T. The sum of the num-
ber of translators and the number of points in this output
encoding is never more than the number of points in the
input dataset and can be much less than this, if there are
many repeated patterns in the input dataset.

The GETBESTTEC function, called in line 4 of COSI-
ATEC, computes the “best” TEC in D′ by first finding all
the MTPs using SIA, then iterating over these MTPs, find-
ing the TEC for each MTP, and storing it if it is the best
TEC so far. In this process, a TEC is considered “bet-
ter” than another if it has a higher compression ratio, as
defined in Eq. 5. If two TECs have the same compres-
sion ratio, then the better TEC is considered to be the one
that has the higher bounding-box compactness (Meredith
et al., 2002), defined as the ratio of the number of points
in the TEC’s pattern to the number of dataset points in the
bounding box of this pattern. Collins et al. (2011) have
provided empirical evidence that the compression ratio and
compactness of a TEC are important factors in determin-
ing its perceived “importance” or “noticeability”. If two
distinct TECs have the same compression ratio and com-
pactness, then, in COSIATEC, the TEC with the larger
covered set is considered superior.

6.4 Forth’s algorithm

Forth (Forth & Wiggins, 2009; Forth, 2012) presented
an algorithm, inspired by COSIATEC, that resembles
the SIATECCOMPRESS algorithm to be described below.
The first step in Forth’s algorithm is to run SIATEC on
the input dataset to generate a sequence of MTP TECs,
T = 〈T1, T2, . . . Tn〉. The algorithm then post-processes
the output of SIATEC to compute a cover for the in-
put dataset. A weight, Wi, is assigned to each TEC, Ti,
to produce a corresponding sequence of weights, W =
〈W1,W2, . . .Wn〉. Wi is intended to be a measure of the
“structural salience” (Forth, 2012, p. 41) of the patterns in
the TEC, Ti, and it is defined as Wi = w′cr,i · w′compV,i

where w′cr,i and w′compV,i are normalized values represent-
ing the compression ratio and compactness of Ti. Having
computed the sequence of weights, W, Forth’s algorithm
then attempts to select a subset of the covered sets of the
TECs in T that covers the input dataset and maximises the
product of the coverage and weight of each TEC used in
the encoding generated.

6.5 SIACT

Collins et al. (2010) claim that all the algorithms described
above can be affected by what they call the ‘problem of iso-
lated membership’. This problem is defined to occur when
“a musically important pattern is contained within an MTP,
along with other temporally isolated members that may or
may not be musically important” (Collins et al., 2010, p. 6).



SIATECCOMPRESS(D)
1 T← SIATEC(D)
2 T← SORTTECSBYQUALITY(T)
3 D′ ← ∅
4 E← 〈〉
5 for i← 0 to |T| − 1
6 T ← T[i]
7 S ← COV(T )

I Recall that each TEC, T , is an ordered pair, 〈P, Θ〉
8 if |S \D′| > |T [0]| + |T [1]| − 1
9 E← E⊕ 〈T 〉
10 D′ ← D′ ∪ S
11 if |D′| = |D|
12 break
13 R← D \D′

14 if |R| > 0
15 E← E⊕ 〈ASTEC(R)〉
16 return E

Figure 8: A straight-forward implementation of SIATE-
CCOMPRESS.

Collins et al. (2010, p. 6) claim that “the larger the dataset,
the more likely it is that the problem will occur” and that it
could prevent the SIA-based algorithms from “discovering
some translational patterns that a music analyst considers
noticeable or important”. Collins et al. propose that this
problem can be solved by taking each MTP computed by
SIA (sorted into lexicographical order) and ‘trawling’ in-
side this MTP “from beginning to end, returning subsets
that have a compactness greater than some threshold a and
that contain at least b points” (Collins et al., 2010, p. 6).
This method is implemented in an algorithm that they call
SIACT, which first runs SIA on the dataset and then car-
ries out ‘compactness trawling’ (hence “SIACT”) on each
of the MTPs found by SIA.

6.6 SIAR

In an attempt to improve on the precision and running time
of SIA, Collins (2011, pp. 282–283) defines an SIA-based
algorithm called SIAR. Instead of computing the whole
region below the leading diagonal in the vector table for
a dataset (as in Figure 4(b)), SIAR only computes the
first r subdiagonals of this table. This is approximately
equivalent to running SIA with a sliding window of size r
(Collins et al., 2010; Collins, 2011).

6.7 SIATECCompress

COSIATEC uses SIATEC on each iteration of its while
loop to compute the best TEC to add to the output en-
coding. Since SIATEC has worst case running time
O(n3) where n is the number of points in the input
dataset, running COSIATEC on large datasets can be
time-consuming. On the other hand, because COSIATEC
strictly partitions the dataset into non-overlapping MTP
TEC covered sets, it tends to achieve high compression ra-
tios for many point-set representations of musical pieces
(typically between 2 and 4 for a piece of classical or
baroque music).

Like COSIATEC, the SIATECCOMPRESS algorithm
shown in Figure 8 is a greedy compression algorithm based
on SIATEC that computes an encoding of a dataset in the
form of a union of TEC covered sets. Like Forth’s algo-
rithm (but unlike COSIATEC), SIATECCOMPRESS runs

SIATEC only once (line 1) to get a list of TECs. This
list is then sorted into decreasing order of quality (line 2),
where the decision as to which of any two TECs is su-
perior is made in the same way as in COSIATEC (de-
scribed above). The algorithm then finds a compact en-
coding, E, of the dataset in the form of a set of TECs. It
does this by iterating over the sorted list of TECs (lines
5–12), adding a new TEC, T , to E if the number of
new points covered by T is greater than the size of its
〈pattern, translator set〉 representation (lines 8–12). Each
time a TEC, T , is added to E, its covered set is added
to the set D′, which therefore maintains the set of points
covered so far after each iteration. When D′ is equal to
D or all the TECs have been scanned, the for loop termi-
nates. Any remaining uncovered points are aggregated into
a residual point set, R, (line 13) which is re-expressed as
a TEC with an empty translator set (line 15) that is added
to the encoding. SIATECCOMPRESS does not generally
produce as compact an encoding as COSIATEC, since the
TECs in its output may share points. However, it is faster
than COSIATEC and can therefore be used practically on
much larger datasets. Unlike Forth’s algorithm, SIATEC-
COMPRESS always produces a complete cover of the input
dataset.

7. USING THE ALGORITHMS TO CLASSIFY
FOLK SONGS

COSIATEC, Forth’s algorithm and SIATECCOMPRESS

were used to classify the melodies in the Annotated Cor-
pus (van Kranenburg et al., 2013; Volk & van Kranenburg,
2012) of 360 Dutch folk songs from the collection, On-
der de groene linde (Grijp, 2008), hosted by the Meertens
Institute and accessible through the website of the Dutch
Song Database (http://www.liederenbank.nl).
The algorithms were used as compressors to calculate
the normalized compression distance between each pair
of melodies in the collection. Each melody was then
classified using the 1-nearest-neighbour algorithm with
leave-one-out cross-validation. The classifications ob-
tained were compared with a ground-truth classification of
the melodies carried out by expert musicologists.

Four versions of each of the three algorithms were
tested:

• the basic algorithm as described above,

• a version incorporating the compactness trawler
from Collins et al.’s SIACT algorithm,

• a version using SIAR instead of SIA and

• a version using both SIAR and the compactness
trawler.

As a baseline, one of the best general-purpose compres-
sion algorithms, bzip2 (Seward, 2010), was also used to
calculate NCDs between the melodies.

Table 1 shows the results obtained in this task. In this
table, algorithms with names containing “R” employed the
SIAR algorithm with r = 3 in place of SIA. Algorithms



Table 1: Results of using different compressors to classify
the Annotated Corpus of Dutch folk songs using NCD, 1-
nn and leave-one-out-cross-validation. SR is the classifi-
cation success rate, CRAC is the average compression ratio
over the melodies in the Annotated Corpus. CRpairs is the
average compression ratio over the pairs of files used to
obtain the NCD values.

Algorithm SR CRAC CRpairs

COSIATEC 0.8389 1.5791 1.6670
COSIARTEC 0.8361 1.5726 1.6569
COSIARCTTEC 0.7917 1.4547 1.5135
COSIACTTEC 0.7694 1.4556 1.5138
ForthCT 0.6417 1.1861 1.2428
ForthRCT 0.6417 1.1861 1.2428
Forth 0.6111 1.2643 1.2663
ForthR 0.6028 1.2555 1.2655
SIARCTTECCompress 0.5750 1.3213 1.3389
SIATECCompress 0.5694 1.3360 1.3256
SIACTTECCompress 0.5250 1.3197 1.3381
SIARTECCompress 0.5222 1.3283 1.3216
bzip2 0.1250 2.7678 3.5061

with names containing “CT” used Collins et al.’s (2010)
compactness trawler, with parameters a = 0.66 and b = 3.
The column headed “SR” gives the classification success
rate—i.e., the proportion of songs in the corpus correctly
classified. The third and fourth columns give the mean
compression ratio achieved by each algorithm over, respec-
tively, the corpus and the file-pairs used to compute the
compression distances.

The highest success rate of 84% was obtained using
COSIATEC. Table 1 suggests that algorithms based on
COSIATEC performed markedly better on this song clas-
sification task than those based on SIATECCOMPRESS

or Forth’s algorithm. All three algorithms use compres-
sion ratio and compactness to select the TECs used in their
output encodings. The main difference between COSI-
ATEC and the other two algorithms is that COSIATEC
removes the points covered by each selected TEC and re-
runs SIATEC on the remaining points to select the next
TEC. This produces a strict partition of the input dataset
into TEC covered sets that are collectively exhaustive in
that they collectively cover the input dataset and mutu-
ally exclusive (i.e., they do not intersect). On the other
hand, the covered sets of the TECs computed by Forth’s al-
gorithm and SIATECCOMPRESS may share points—i.e.,
they may not be mutually exclusive. Moreover, the set of
TEC covered sets generated by Forth’s algorithm may not
be collectively exhaustive. The results in Table 1 suggest
that the strategy adopted in COSIATEC may better model
the cognitive processes used by the musicologists who cre-
ated the ground-truth classification.

Using SIAR instead of SIA and/or incorporating com-
pactness trawling reduced the performance of COSI-
ATEC. However, using both together, slightly improved
the performance of SIATECCOMPRESS. Forth’s algo-
rithm performed slightly better than SIATECCOMPRESS.

The performance of Forth’s algorithm on this task was
improved by incorporating compactness trawling; using
SIAR instead of SIA in Forth’s algorithm slightly reduced
the performance of the basic algorithm and had no effect
when compactness trawling was used. The results obtained
using bzip2 were much poorer than those obtained using
the SIA-based algorithms, suggesting that general-purpose
compressors may fail to capture certain musical structure
that is important for this task—at least when run on point-
set representations of the type used in this study. Of
the SIA-based algorithms, COSIATEC achieved the best
compression on average, followed by SIATECCOMPRESS

and then Forth’s algorithm. COSIATEC also achieved the
best success rate. However, since Forth’s algorithm per-
formed slightly better than SIATECCOMPRESS, it seems
that degree of compression alone was not a reliable indica-
tor of classification accuracy on this task—indeed, the best
compressor, bzip2, produced the worst classifier. None
of the algorithms achieved a success rate as high as the
99% obtained by van Kranenburg et al. (2013) on this cor-
pus using several local features and an alignment-based
approach. The success rate achieved by COSIATEC is
within the 83–86% accuracy range obtained by Velarde
et al. (2013, p. 336) on this database using a wavelet-based
representation, with similarity measured using Euclidean
or city-block distance.

8. CONCLUSIONS

The results in Table 1 suggest that the implicit and explicit
knowledge and cognitive processes used by the musicolo-
gists who developed the ground-truth classification for the
Annotated Corpus of the Dutch folk-song database can be
modelled reasonably well by using normalized compres-
sion distance (NCD) as a measure of similarity. How-
ever, the results also show that the success of such an
NCD-based model depends critically on which compres-
sor one uses to produce NCDs and how encoding length is
measured. In particular, in this study, compressors based
on point-set pattern discovery and TEC compression-ratio
performed much better than a baseline general-purpose,
string-based compressor of the type used in previous stud-
ies that have used NCD for music classification.
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