
Preliminary Report on Gathering a Larger Annotated Dataset for Pattern Discovery Tasks

Klara Žnideršič, Iris Y. Ren, Anja Volk, Matevž Pesek

Pattern discovery

- Since ~2013 @ MIREX
- Johannes Kepler University Patterns Development/Test Databases
 - 5 songs in each dataset
- Four subtasks
 - symPoly, symMono (converted)
 - audPoly, audMono
- Small group of participants

Following years

- Still a small group of participants
- Limitations of the JKU-PDD (5 songs)
- Interest remains, but the task is somehow limited
- spin-off task -> Patterns for prediction
- Two subtasks
 - (explicit) matching algo's prediction with original
 - (implicit) providing probability of the given continuation being genuine

Sub code	Submission name	Abstract	Contributors		
Task Versio	n symPoly				
DM1	SIATECCompress-TLF1	PDF 🗅	David Meredith ☑		
DM2	SIATECCompress-TLP	PDF D	David Meredith ☑		
DM3	SIATECCompress-TLR	PDF 🗅	David Meredith ☑		
ask Versio	n symMono				
DM1	SIATECCompress-TLF1	PDF 🗅	David Meredith ☑		
DM2	SIATECCompress-TLP	PDF 🗅	David Meredith ☑		
DM3	SIATECCompress-TLR	PDF 🗅	David Meredith ☑		
R1	mypattern	PDF D	Iris YuPing Ren ☑		
PLM1	SYMCHM	PDF 🗅	Matevž Pesek ☑, Urša Medvešek, Aleš Leonardis ☑, Matija Marolt ☑		
/M1'14	VM1	PDF 🗅	Gissel Velarde ☑, David Meredith ☑		
/M2'14	VM2	PDF 🗅	Gissel Velarde 댐, David Meredith 댐		
Sub code	Submission name	Abstract	Contributors		
	n symMono	718011401			
NF1	MotivesExtractor	PDF 🗅	Oriol Nieto 댐, Morwaread Farbood 댐		
OL1	PatMinr	PDF D	Olivier Lartillot 댐		
VM1	VM1	PDF D	Gissel Velarde 답, David Meredith 답		
VM2	VM2	PDF D	Gissel Velarde 당, David Meredith 당		
NF1'13	motives_mono	PDF D	Oriol Nieto ៤, Morwaread Farbood ៤		
DM10'13	SIATECCompressSegment	PDF D	David Meredith 🗗		
	n symPoly	1010	Buvid Wolfould I		
NF1	MotivesExtractor	PDF 🗅	Oriol Nieto ß, Morwaread Farbood ß		
NF2'13	motives_poly	PDF D	Oriol Nieto 명, Morwaread Farbood 명		
DM10'13	SIATECCompressSegment	PDF D	David Meredith 대		
	n audMono	T DI L	David Weledian IS		
NF1	MotivesExtractor	PDF D	Oriol Nieto ß, Morwaread Farbood ß		
NF3'13	motives audio mono	PDF D	Oriol Nieto 당, Morwaread Farbood 당 Oriol Nieto 당, Morwaread Farbood 당		
		PDF L	Ono Nieto Es, Morwaread Parbood Es		
Task Versio NF1	MotivesExtractor	PDF D	Oriol Nieto 량, Morwaread Farbood 량		
NF1 NF4'13	motives_audio_poly	PDF D	Oriol Nieto 단, Morwaread Farbood 단		
Sub code	Submission name	Abstract	Contributors		
	n symMono				
PLM1	SYMCHM	PDF D	Matevž Pesek 🗗, Urša Medvešek, Aleš Leonardis 🗗, Matija Marolt 🗗		
OL1'14	PatMinr	PDF D	Olivier Lartillot 🗗		
VM2'14	VM2	PDF 🗅	Gissel Velarde 점, David Meredith 점		
	n audMono				
WHD1	VMO Motif Discovery	PDF 🗅	Cheng-i Wang ß, Jennifer Hsu ß, Shlomo Dubnov ß		
WDH1	VMO Motif Discovery FML	PDF 🗅	Cheng-i Wang ß, Jennifer Hsu ß, Shlomo Dubnov ß		
NF1'14	MotivesExtractor	PDF 🗅	Oriol Nieto 妤, Morwaread Farbood 妤		
Task Versio					
WHD1	VMO Motif Discovery	PDF 🗅	Cheng-i Wang 妤, Jennifer Hsu 妤, Shlomo Dubnov 妤		
WDH1	VMO Motif Discovery FML	PDF 🗅	Cheng-i Wang ៤, Jennifer Hsu ៤, Shlomo Dubnov ៤		
NF1'14	MotivesExtractor	PDF P	Oriol Nieto 🖾 Monwaread Earbood 🖾		

Rebooting the pattern discovery

- Meetup at ISMIR 2019
- Mostly researchers who submitted to MIREX tasks
- High interest remained
- Patterns for prediction task

What happened?

- Covid-19
 - Less tasks in 2020
 - No Patterns for prediction or Pattern discovery tasks in 2021
 - No MIREX tasks in 2022
 - Stephen Downie interest, finances, infrastructure issues

2021:MIREX2020 Results

Results by Task (More results are coming)

■ 2021: Automatic Lyrics Transcription Results

■ 2021: Set List Identification

results by year

- MIREX 2021 Results
- MIREX 2020 Results
- MIREX 2019 Results
- MIREX 2018 Results
- MIREX 2017 Results
- MIREX 2016 Results
- MIREX 2015 Results
- MIREX 2014 Results
- MIREX 2013 Results
- MIREX 2012 Results
- MIREX 2011 Results
- MIREX 2010 Results
- MIREX 2009 Results
- MIREX 2008 Results
- MIREX 2007 Results
- MIREX 2006 Results
- MIREX 2005 Results

2020:MIREX2020 Results

Overall Results Poster

Coming soon

Results by Task (More results are coming)

- Audio Fingerprinting Results
- Audio Melody Extraction Results
 - ADC04 Dataset 🕏
 - MIREX05 Dataset 译
 - INDIAN08 Dataset 🗗
 - MIREX09 0dB Dataset 🗗
 - MIREX09 -5dB Dataset 🗹
 - MIREX09 +5dB Dataset 🗗
 - ORCHSET15 Dataset 🗗
- Patterns for Prediction Results
- Audio Cover Song Identification Results
- Train-Test Task Set
 - Audio Music Mood Classification Results ☑
 - Audio KPOP Mood (Annotated by Korean Annotators) Classification Results ☑
 - Audio KPOP Mood (Annotated by American Annotators) Classification Results 🗗
 - Audio Mixed Popular Genre Classification Results 🗗
 - Audio KPOP Genre (Annotated by Korean Annotators) Classification Results 🛂
 - Audio KPOP Genre (Annotated by American Annotators) Classification Results 🗗
- Automatic Lyrics-to-Audio Alignment Results
- Lyrics Transcription Results
- Audio Key Detection
- Audio Chord Estimation
 - Isophonics2009 Dataset
 - Billboard2012 Dataset
 - Billboard2013 Dataset
 - JayChou29 Dataset
 - RobbieWilliams Dataset
 - RWC-Popular Dataset
 - USPOP2002Chords Dataset
 - CASD Dataset
- Singing Transcription from Polyphonic Music Results

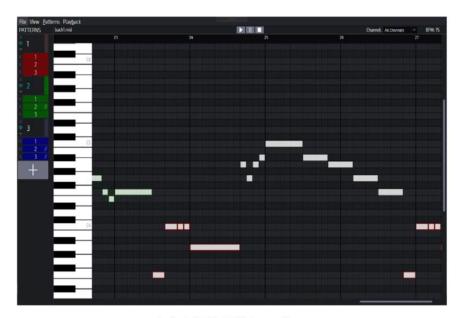
However ...

- Activity (and hope) remains!
 - Submissions to ISMIR 2022/23
 - SIATEC-C: Computationally efficient repeated pattern discovery in polyphonic music (Björklund)
 - Active publications by "members" of the former Pattern discovery task
 - Understanding and Compressing Music with Maximal Transformable Patterns (Meredith) -2021
 - Exploring annotations for musical pattern discovery gathered with digital annotation tools (Tomaševič et al.) – 2021
 - A Computational Evaluation of Musical Pattern Discovery Algorithms (Ren et al.) 2020
 - A Comparison of Human and Computational Melody Prediction Through Familiarity and Expertise (Pesek et al.) - 2020

Similar topics - prediction

- Predicting melody continuation
 - European and Chinese folk song datasets
 - Complete and incomplete sequences
 - Predicting the next note in a melodic sequence (57 participants)
 - Using of SymCHM model for prediction
 - Comparing to human participants (musicians/non-musicians)

	Dataset			
Model	European	Chinese		
SymCHM-eu	0.720	0.491		
SymCHM-cn	0.635	0.520		
Adjusted I-R model	0.648	0.490		

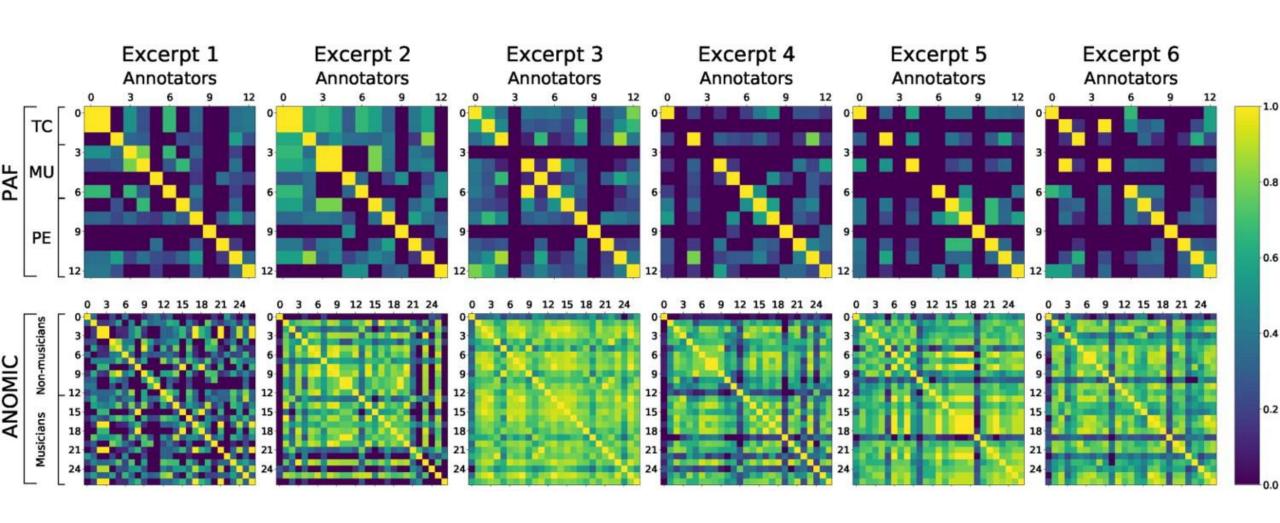

- Residual results
 - Slovenian translation and validation of MSI instrument (231 participants)

	European excerpts			Chinese excerpts		
	All (%)	Complete (%)	Incomplete (%)	All (%)	Complete (%)	Incomplete (%)
All participants	58	63	42	34	34	35
Musicians	68	74	47	39	37	44
Non-musicians	41	43	33	25	27	21
baseline (all notes)	4	4	4	4	4	4
baseline (scale notes)	6.7	6.7	6.7	9.1	9.1	9.1
SymCHM-eu	60	73	20	30	33	20
SymCHM-cn	45	53	20	30	40	0
Adjusted I-R model	50	60	20	35	25	40

The table also includes a baseline, taking into account all possible 25 semitons, which could be picked from the interface, and a scale notes baseline, which includes 15 semitones for major/minor scales (European excerpts), and 11 semitones for pentatonic scale (Chinese excerpts), both within ± one octave.

Similar topics - annotations

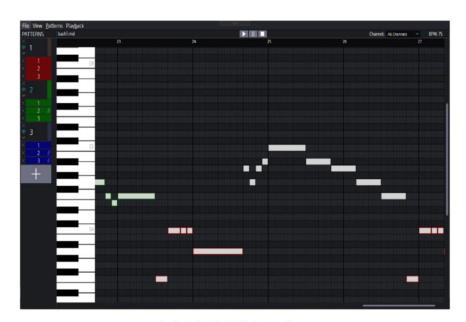
- Brainstorming since 2019
 - Collecting multiple annotations -> interannotator agreement
 - Two tools (ANOMIC and PAF)
 - Nieto-Farbood (ANOMIC) Dataset
 - Bach, Beethoven, Haydn, Mozart (6 pcs)
 - 13 (PAF) + 26 (Anomic) students
 - 4 Musicology (MU), 3 Theory and composition (TC), 6 Pedagogy (PE)



(a) ANOMIC interface

(b) PAF interface

Results

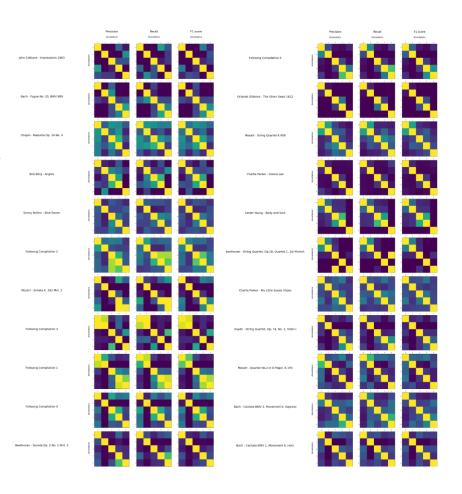


What the #3&% is a pattern?

- We all know there are patterns (or do we?)
 - What defines them? Why do they differ between different experts?
- How is the expert's background influencing their perception of a pattern?
 - Expertise, familiarity, instrument, other social aspects
- Should we consider all patterns (simultaneously)?
- What goal(s) should the algorithms pursue?

Comparing differences

- Different interfaces
 - Music notations vs. piano roll
 - Standalone vs. web
- Different student groups
 - Different background, similar age (i.e. experience)
- Different annotations
 - Pattern importance, naming


(a) ANOMIC interface

(b) PAF interface

What's with the inter-annotator agreement?

- Should we consider all results as reference annotations concurrently?
- Should we compare results to annotator groups (education, instrument, years of experience/profession)?
- How do we take these findings into consideration?

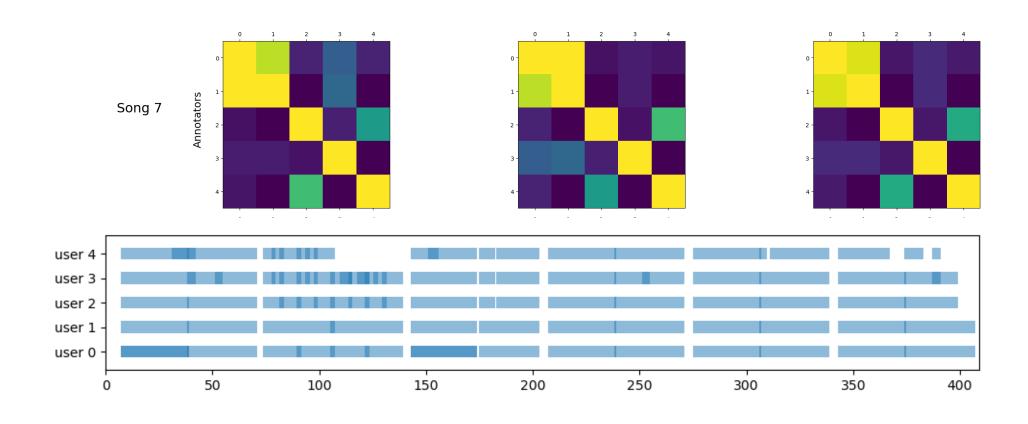
The idea

- 1. We need a bigger dataset
 - a. More songs
 - b. More diverse
- 2. We need more annotators
 - 1. Big (enough) group/s
 - 2. Willpower (or financial motivation) to annotate that bigger dataset

The dataset

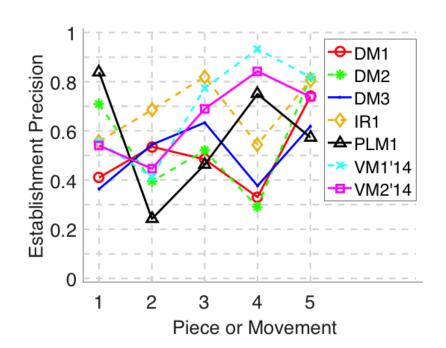
- Retaining the comparability with the previous task
 - JKU-PDD 5 songs
 - Excerpts (used for ANOMIC/PAF comparison) 6 songs
- Novelty
 - Jazz excerpts 6 songs
 - Folk songs 5 songs (each includes 6 variants within tune family, concatenated)
- Potentially missing
 - Modern popular genres
 - (Maybe) more constrained pattern definition

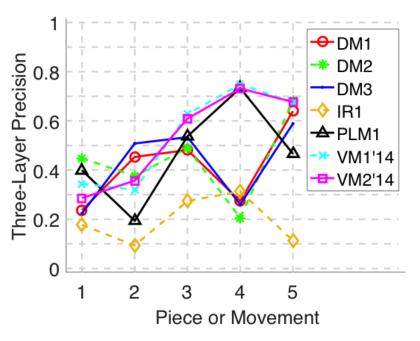
The annotators


- Five annotators (2F, 3M; 20-25 years old)
- Musicology masters programme
- 14 30 days for annotations per annotator (may dec 2022)
- Financial motivation (student work)

Preliminary results

- 4026 patterns/occurrences in 22 songs
- 2.1 pattern occurrences per song
 - Max per annotator: 36, 19, 19, 6, 16
- Average pattern duration: 8.18 notes


- Pattern types:
 - Transformations prime forms, inversions, retrograde, retrograde inversions (annotated explicitly)
 - Sub-patterns (explicitly marked)


Inter-annotator agreement

Immediate steps

- Cleaning up the data
 - Connect differently-named patterns as single entities (complex issue, i.e. subpatterns, types etc)
- Inter-annotator agreement analysis
 - Outlier identification, comparison of previous pattern annotations of included sub-sets
 - Identifying the "common ground" within a (relatively) non-diverse group
- Using the data to evaluate (existing) approaches to pattern discovery
 - Contact MIREX task authors and evaluate their approach using the *standard* metrics

Further steps

- Figuring out the adjusted metrics how to include dis/agreement?
 - Fitting the algorithm's output to one annotator group (experience, background)
- Getting another group of annotators
 - Financial limitations and time consumption
- Further enlarging the dataset
 - Time/finance, access to groups ...

Looking forward to share the dataset and (re)evaluate algorithms!

Klara Žnideršič, Iris Y. Ren, Anja Volk, Matevž Pesek

matevz.pesek@fri.uni-lj.si / matevz.pesek@gmail.com